
9/7/22, 3:46 PM5_Statistical_Inference - Jupyter Notebook

Page 1 of 9http://localhost:8888/notebooks/Fall_2022/MA506/5_Statistical%20Inference/5_Statistical_Inference.ipynb

MA 506 Probability and Statistical
Inference

Lecture 5: Statistical Inference
In [3]:

1. Categories of statistical methods

1.1 Descriptive statistical methods :
Descriptive statistics is the term given to the analysis of data that helps describe, show or
summarize data in a meaningful way such that, for example, patterns might emerge from the
data. Descriptive statistics do not, however, allow us to make conclusions beyond the data
we have analysed or reach conclusions regarding any hypotheses we might have made.
They are simply a way to describe our data. Example: mean, variance etc.

1.2 Inferential statistical methods:
Inferential statistics are techniques that allow us to make generalizations about the
population from which obtained samples were drawn. It is, therefore, important that the
sample accurately represents the population. Hence sampling technique chosen should
complement the type of analysis that needs to be done.

import numpy as np
from matplotlib.pyplot import *
from scipy import stats

9/7/22, 3:46 PM5_Statistical_Inference - Jupyter Notebook

Page 2 of 9http://localhost:8888/notebooks/Fall_2022/MA506/5_Statistical%20Inference/5_Statistical_Inference.ipynb

Main steps:
1. Goal is to deduce structure of a phenomenon (underlying the whole population) based

on observed data (a small sample from the population).
2. Given a sample S

of observed realizations of a random variables (x,y), we want to infer the underlying
probability distribution that produces data S.

! = {(,), (,), . . , (,)}, where ∈ , ∈ ℝ"1 #1 "2 #2 "$ #$ "% ℝ& #%

2. Some theoretical results

2.1 Stong law of large numbers:
Let is a sequence of i.i.d random variables with and

 and define . Then for every :

Demonstrating Stong law of large numbers

Lets consider the experiment of rolling a dice n times. Here we are considering that each
face 1 to 6 is equally likely. For example on a single throw of dice following face comes up

{ , , . . }"1 "2 "$ "[] = '"(
) *+() = < ∞"(,2 = /$!$ ∑$(=1 "(- > 0

.(| − '| < -) = 1lim
$→∞

!$

9/7/22, 3:46 PM5_Statistical_Inference - Jupyter Notebook

Page 3 of 9http://localhost:8888/notebooks/Fall_2022/MA506/5_Statistical%20Inference/5_Statistical_Inference.ipynb

In [4]:

In [5]:

Out[4]: 4

np.random.choice([1,2,3,4,5,6],p = [1/6,1/6,1/6,1/6,1/6,1/6])

Getting the figure and the axis
figure(figsize=(10,5))
ax = subplot2grid((1,1),(0,0))

num = 10000
throw = []
mu = 3.5
term = []
for i in range(num):
 #face = np.random.choice([1,2,3,4,5,6],p = [1/6,1/6,1/6,1/6,1/6,1/6])
 face = np.random.choice([1,2,3,4,5,6]) ## Generating a sample
 throw.append(face)
 S_n = sum(throw)/len(throw)
 term.append(abs(S_n-mu))
plot(term)
ax.set_xlabel('Number of dice throws',size = 20)
ax.set_ylabel(r'$|S_n - \mu|$',size = 20)
ax.set_title('Law of large numbers',size = 20)
yticks(size=15)
xticks(size=15)
grid(True)
show()

9/7/22, 3:46 PM5_Statistical_Inference - Jupyter Notebook

Page 4 of 9http://localhost:8888/notebooks/Fall_2022/MA506/5_Statistical%20Inference/5_Statistical_Inference.ipynb

2.2 Central Limit Theorem

Suppose is a sequence of i.i.d random variables with and

, then as , the random variable (where
) converges in distribution to standard normal distribution: . i.e.,

{ , , . . }"1 "2 "$ "[] = '"(

) *+() = < ∞"(,2 $ → ∞ (−')$√ !$

,

= /$!$ ∑$(=1 "(/(0, 1)

→ /(0, 1)lim
$→∞

(− ')$
⎯⎯√ !$

,

In [6]: ## Generating the Population for the dice throw
population = np.random.choice([1,2,3,4,5,6],size=100000)

9/7/22, 3:46 PM5_Statistical_Inference - Jupyter Notebook

Page 5 of 9http://localhost:8888/notebooks/Fall_2022/MA506/5_Statistical%20Inference/5_Statistical_Inference.ipynb

In [7]: ## Getting the figure and the axis
figure(figsize=(12,6))
ax = subplot2grid((1,1),(0,0))

num_samples = 10000
sample_size = 1000
samples = [np.random.choice(population,size=sample_size) for i in range
rvs = []
for i in samples:
 rv = np.sqrt(sample_size)*((sum(i)/sample_size - mu)/np.sqrt(105/36
 rvs.append(rv)

hist(rvs,density=True,bins=50, label = 'Density Histogram')

ax.set_xlabel('$\sqrt{n}*(S_n - \mu)/\sigma$',size = 20)
ax.set_ylabel('PDF',size = 20)
ax.set_title('Central Limit Theorem: dice throw experiment',size = 20)
yticks(size=15)
xticks(size=15)

x = np.linspace(-5,5,200)
plot(x, stats.norm.pdf(x, 0, 1), color = 'r',lw = 3, label = 'Standard Normal $\sim \mathbb{N}(0,1)$'
ax.legend(loc=1, prop={'size': 15})
#grid(True)
text(-5,0.40,'Number of Samples: '+str(num_samples), fontsize=18)
text(-5,0.34,'Sample size: '+str(sample_size), fontsize=18)
show()

9/7/22, 3:46 PM5_Statistical_Inference - Jupyter Notebook

Page 6 of 9http://localhost:8888/notebooks/Fall_2022/MA506/5_Statistical%20Inference/5_Statistical_Inference.ipynb

From Bayes theorem to Bayesian
inference
Here we will discuss how Bayes formula directly corresponds to taking the information from
data about a system and updating our belief about it

For a model with parameters and observations 0 = [, , . . . ,01 02 01]2
3 = [, , . . . ,31 32 3$]2

.(4|3) = .(3|4).(4)
.(3)

1. posterior distribution of parameters after observing data
2. Likelihood of observing that particular dataset.
3. Prior assumed distribution on the parameters.
4. Marginal distribution for the data observed.

. (4|3) :

. (3|4) :

. (4) :

. (3) :

Coin Toss experiment in a bayesian
framework
Here, we will assume initially that we do not know the probability of heads turning up. Then
using the data of toin tosses we will estimate this probability using a Bayesian framework

We want to estimate the the probability of heads from the same experiment we carried out
before. However this time instead of just using the mean and get a point estimate we want to
get the full distribution for the probability of heads

9/7/22, 3:46 PM5_Statistical_Inference - Jupyter Notebook

Page 7 of 9http://localhost:8888/notebooks/Fall_2022/MA506/5_Statistical%20Inference/5_Statistical_Inference.ipynb

Binomial likelihood function
If out of n tosses, y turned out to be success (heads)

However we dont care about the scaling as it is independent of p

5(1|$, #) = ()$# ∗ (1 − 11#)$−#

()$#
5(1|$, #) = ∗ (1 − 11#)$−#

In [8]:

In [9]:

Out[8]: 1000

1000 experiments of 100 coin tosses each
X = np.random.binomial(100,p=0.5,size=1000)
len(X)

X already contains the result of 10000 repeat of the experiment
num_success = X[0] ## considering the 1st experiment
x = np.linspace(0,1,200)
prior = 1 ## Uniform prior, i.e all values from 0 to 1 are equaly likely
likelihood = (x**num_success)*((1-x)**(100-num_success))
posterior = likelihood*prior/max(likelihood*prior)

9/7/22, 3:46 PM5_Statistical_Inference - Jupyter Notebook

Page 8 of 9http://localhost:8888/notebooks/Fall_2022/MA506/5_Statistical%20Inference/5_Statistical_Inference.ipynb

In [10]:

Visualization

fig = figure(figsize=(8,4))
Plotting the prior
ax = fig.add_subplot(1,2,1)
ax.plot(x,prior*np.ones(x.shape))
ax.set_xlabel('Parameter(probability of heads)', size = 10)
ax.set_ylabel('PDF', size = 10)
ax.set_title('Prior distribution')

ax = fig.add_subplot(1,2,2)
ax.plot(x,posterior)
ax.set_xlabel('Parameter(probability of heads)', size = 10)
ax.set_ylabel('PDF', size = 10)
ax.set_title('Posterior distribution')
show()

9/7/22, 3:46 PM5_Statistical_Inference - Jupyter Notebook

Page 9 of 9http://localhost:8888/notebooks/Fall_2022/MA506/5_Statistical%20Inference/5_Statistical_Inference.ipynb

In [11]:

In [12]:

In [13]:

In []:

In []:

interactive(children=(FloatSlider(value=0.5, description='p', max=1.0
, step=0.01), IntSlider(value=0, descript…

def coin_toss(p = 0.5, n = 0):
 ## Flip the coin and generate the data
 num_success = np.random.binomial(n,p)
 ## X axis of pdf
 x = np.linspace(0,1,200)
 ## computing posterior
 prior = 1
 likelihood = (x**num_success)*((1-x)**(n-num_success))
 posterior = likelihood*prior/max(likelihood*prior)
 plot(x,posterior)
 xlabel('Parameter(probability of heads)', size = 10)
 ylabel('PDF', size = 10)
 title('Posterior distribution', size = 20)
 show()

from ipywidgets import interact

interact(coin_toss, p = (0,1,0.01), n = (0,1000,10))
show()

