5_Statistical_Inference - Jupyter Notebook 9/7/22, 3:46 PM

MA 506 Probability and Statistical
Inference

Lecture 5: Statistical Inference

In [3]: import numpy as np
from matplotlib.pyplot import x*
from scipy import stats

1. Categories of statistical methods

1.1 Descriptive statistical methods :

Descriptive statistics is the term given to the analysis of data that helps describe, show or
summarize data in a meaningful way such that, for example, patterns might emerge from the
data. Descriptive statistics do not, however, allow us to make conclusions beyond the data
we have analysed or reach conclusions regarding any hypotheses we might have made.
They are simply a way to describe our data. Example: mean, variance etc.

1.2 Inferential statistical methods:

Inferential statistics are techniques that allow us to make generalizations about the
population from which obtained samples were drawn. It is, therefore, important that the
sample accurately represents the population. Hence sampling technique chosen should
complement the type of analysis that needs to be done.

http://localhost:8888/notebooks/Fall_2022/MA506/5_Statistical%20Inference/5_Statistical_Inference.ipynb Page 1 of 9

5_Statistical_Inference - Jupyter Notebook 9/7/22, 3:46 PM

Population

Make corresponding

inference for whole Generate a sample
population: like i

Compute
Estimators: like x

Main steps:

1. Goal is to deduce structure of a phenomenon (underlying the whole population) based
on observed data (a small sample from the population).
2. Given a sample S

S = {(x1, 91, (%2, 32)s - - (X, yu)}, where x; € RY, y; € R
of observed realizations of a random variables (x,y), we want to infer the underlying
probability distribution that produces data S.

2. Some theoretical results

2.1 Stong law of large numbers:

Let {x;, X2, ..X,} is a sequence of i.i.d random variables with E[x;] = u and
Var(x;) = 6> < o and define S, = 2?:1 X;/n. Then for every € > 0:

Pl lim|S,—ul<e]=1

n—oo

Demonstrating Stong law of large numbers

Lets consider the experiment of rolling a dice n times. Here we are considering that each
face 1 to 6 is equally likely. For example on a single throw of dice following face comes up

http://localhost:8888/notebooks/Fall_2022/MA506/5_Statistical%20Inference/5_Statistical_Inference.ipynb Page 2 of 9

5_Statistical_Inference - Jupyter Notebook 9/7/22, 3:46 PM

In [4]: np.random.choice([1,2,3,4,5,6],p = [1/6,1/6,1/6,1/6,1/6,1/6])
Outl4]: 4
In [5]: ## Getting the figure and the axis

figure(figsize=(10,5))
ax = subplot2grid((1,1),(0,0))

num = 10000
throw = []
mu = 3.5
term = []

for i in range(num):
#face = np.random.choice([1,2,3,4,5,6],p = [1/6,1/6,1/6,1/6,1/6,1/
face = np.random.choice([1,2,3,4,5,6]) ## Generating a sample
throw.append(face)
S_n = sum(throw)/len(throw)
term.append(abs(S_n-mu))
plot(term)
ax.set_xlabel('Number of dice throws',size = 20)
ax.set_ylabel(r'$|S_n - \mu|$',size = 20)
ax.set_title('Law of large numbers',size = 20)
yticks(size=15)
xticks(size=15)
grid(True)
show()

Law of large numbers

2.5 1

0.0 . N.a.ﬂ_—-‘

0 2000 4000 6000 8000 10000
Number of dice throws

http://localhost:8888/notebooks/Fall_2022/MA506/5_Statistical%20Inference/5_Statistical_Inference.ipynb Page 3 of 9

5_Statistical_Inference - Jupyter Notebook 9/7/22, 3:46 PM

2.2 Central Limit Theorem

Suppose {x1, X2, .. X, } is a sequence of i.i.d random variables with E[x;] = u and

(Su—H)
Var(x;) = 6> < o0, then as n — o0, the random variable Q (
S, = X, X;/n) converges in distribution to standard normal distribution: N (0, 1). i.e.,

VS, =)
(02

where

Iim
n—->oo

— N(,1)

In [6]: ## Generating the Population for the dice throw
population = np.random.choice([1,2,3,4,5,6],5ize=100000)

http://localhost:8888/notebooks/Fall_2022/MA506/5_Statistical%20Inference/5_Statistical_Inference.ipynb Page 4 of 9

5_Statistical_Inference - Jupyter Notebook 9/7/22, 3:46 PM

In [7]: ## Getting the figure and the axis
figure(figsize=(12,6))
ax = subplot2grid((1,1),(0,0))

num_samples = 10000
sample_size 1000
samples = [np.random.choice(population,size=sample_size) for i in ranc
rvs = []
for i in samples:
rv = np.sqrt(sample_size)*((sum(i)/sample_size — mu)/np.sqrt(105/:Z
rvs.append(rv)

hist(rvs,density=True,bins=50, label = 'Density Histogram')

ax.set_xlabel('$\sqrt{n}x(S_n - \mu)/\sigmas$',size = 20)
ax.set_ylabel('PDF',size = 20)

ax.set_title('Central Limit Theorem: dice throw experiment',size = 20)
yticks(size=15)

xticks(size=15)

X = np.linspace(-5,5,200)

plot(x, stats.norm.pdf(x, @, 1), color = 'r',lw = 3, label = 'Standarc
ax.legend(loc=1, prop={'size': 15})

#grid(True)

text(-5,0.40, '"Number of Samples: '+str(num_samples), fontsize=18)
text(-5,0.34,'Sample size: '+str(sample_size), fontsize=18)

show()

Central Limit Theorem: dice throw experiment

Bl Density Histogram
0.4{ Number of Samples: 10000 —— Standard Normal ~/(0,1)
Sample size: 1000
0.3
TR
(m)
2 0.2
0.1
0.0

—4 0 4
vn*(S, —u)/o

http://localhost:8888/notebooks/Fall_2022/MA506/5_Statistical%20Inference/5_Statistical_Inference.ipynb Page 5 of 9

5_Statistical_Inference - Jupyter Notebook 9/7/22, 3:46 PM

From Bayes theorem to Bayesian
inference

Here we will discuss how Bayes formula directly corresponds to taking the information from
data about a system and updating our belief about it

For a model with parameters Q = [Q4, O,, ..., QP]T and observations
_ T
v=1[vy,02,...,0,]

P(v|q)P(q)
P(glv) = Z50

. P(q|v) : posterior distribution of parameters after observing data
. P(v|q) : Likelihood of observing that particular dataset.

. P(q) : Prior assumed distribution on the parameters.

. P(v) : Marginal distribution for the data observed.

AW N =

Coin Toss experiment in a bayesian
framework

Here, we will assume initially that we do not know the probability of heads turning up. Then
using the data of toin tosses we will estimate this probability using a Bayesian framework

We want to estimate the the probability of heads from the same experiment we carried out
before. However this time instead of just using the mean and get a point estimate we want to
get the full distribution for the probability of heads

http://localhost:8888/notebooks/Fall_2022/MA506/5_Statistical%20Inference/5_Statistical_Inference.ipynb Page 6 of 9

5_Statistical_Inference - Jupyter Notebook 9/7/22, 3:46 PM

Binomial likelihood function

If out of n tosses, y turned out to be success (heads)

L(pln,y) = (1) p* = (1 = py™

However we dont care about the scaling (;) as it is independent of p

L(pln,y) = p> (1 — p)*™”

In [8]: ## 1000 experiments of 100 coin tosses each
X = np.random.binomial(100,p=0.5,s1ze=1000)
len(X)

Out[8]: 1000

In [9]: ## X already contains the result of 10000 repeat of the experiment
num_success = X[0] ## considering the 1st experiment
X = np.linspace(0,1,200)
prior = 1 ## Uniform prior, i.e all values from @ to 1 are equaly like
likelihood = (x**knum_success)*((1-x)**(100-num_success))
posterior = likelihood*prior/max(likelihood*prior)

http://localhost:8888/notebooks/Fall_2022/MA506/5_Statistical%20Inference/5_Statistical_Inference.ipynb Page 7 of 9

5_Statistical_Inference - Jupyter Notebook 9/7/22, 3:46 PM

In [10]: fig = figure(figsize=(8,4))
Plotting the prior
ax = fig.add_subplot(1,2,1)
ax.plot(x,prior#np.ones(x.shape))

ax.set_xlabel('Parameter(probability of heads)', size = 10)
ax.set_ylabel('PDF', size = 10)
ax.set_title('Prior distribution')
ax = fig.add_subplot(1,2,2)
ax.plot(x,posterior)
ax.set_xlabel('Parameter(probability of heads)', size = 10)
ax.set_ylabel('PDF', size = 10)
ax.set_title('Posterior distribution')
show()
Prior distribution Posterior distribution
10 1
104 1
0.8
102 4
0.6
é 100 1 §
0.4
0.98 4
0.2
0.96 1
0.0
00 02 04 06 08 10 00 02 04 06 08 10
Parameter(probability of heads) Parameter(probability of heads)
Visualization

http://localhost:8888/notebooks/Fall_2022/MA506/5_Statistical%20Inference/5_Statistical_Inference.ipynb Page 8 of 9

5_Statistical_Inference - Jupyter Notebook

In [11]: def coin_toss(p = 0.5, n = 0):
Flip the coin and generate the data
num_success = np.random.binomial(n,p)
X axis of pdf
X = np.linspace(0,1,200)
computing posterior
prior =1
likelihood = (x**num_success)*((1-x)x**(n-num_success))
posterior = likelihood*prior/max(likelihood*prior)
plot(x,posterior)
xlabel('Parameter(probability of heads)', size = 10)
ylabel('PDF', size = 10)
title('Posterior distribution', size = 20)
show()

In [12]: from ipywidgets import interact

In [13]: interact(coin_toss, p = (0,1,0.01), n = (0,1000,10))
show()

9/7/22, 3:46 PM

interactive(children=(FloatSlider(value=0.5, description='p', max=1.0

, step=0.01), IntSlider(value=0, descript..
In []:

In []:

http://localhost:8888/notebooks/Fall_2022/MA506/5_Statistical%20Inference/5_Statistical_Inference.ipynb

Page 9 of 9

